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Abstract

Sensor based robot motion planning research has so far primarily focused on mo-

bile robots. Consider, however, the case of a robot manipulator expected to operate

autonomously in a dynamic environment where unexpected collisions can occur

with many parts of the robot. Only a sensor based system capable of generating

collision free paths would be acceptable in such situations. Recently, work in

this area has been reported in literature [Lumelsky87c] in which a deterministic

solution for 2DOF systems has been generated. The arm was sensitized with a

"skin" of infra-red sensors.

We have proposed a heuristic (potential field based) methodology for redundant

robots with large dofs. The key concepts are solving the path planning problem by

cooperating global and local planning modules, the use of complete information

from the sensors and partial (but appropriate) information from a world model,

representation of objects with hyper-ellipsoids in the world model, and the use

of variational planning. We intend to sensitize the robot arm with a "skin" of

capacitive proximity sensors [Vranish92]. These sensors have been developed at

NASA, and are exceptionally suited for the space application.

In the first part of the report, we discuss the development and modeling of the

capacitive proximity sensor. In the second part we discuss the motion planning

algorithm.



Chapter 1

Introduction

Let us consider a redundant robot manipulator operating in a space station. To

operate autonomously, it must be provided capabilities to

• Stop at the presence of an unexpected obstacle. (The obstacle could be an

astronaut!)

• Maneuver around the obstacle if possible and continue to perform its task.

Two issues have been addressed towards this end in the course of this research.

1.1 Sensing: The Capaciflector

For planning paths in the presence of unknown obstacles, there is a need for an

array of sensors on the robot, which can detect an obstacle approaching any part

of the robot structure. We shall refer to this array of sensors wrapped around the

robot as the "sensing skin". The sensing skin must be able to function reliably in

the extreme environment of space and not disturb or be disturbed by neighboring

NASA instruments. It should be simple, compact and be incidental to the robot

design.

An approach based on an array of capacitors appeared to be promising in

solving both the proximity and tactile models [Vranish90]. However, the system

must be able to detect objects (including humans) at ranges in excess of one

foot so that the robot can react. To obtain such a range, a capacitive sensor

typically must be "stood off" from the grounded robot arm a considerable distance



(approximatelyone inch). This woulddisfigure therobot arm, causingit to be
bulkier thannecessary.It wouldalsomakecross-talkbetweenthesensorelements
morepronouncedand would likely impedetheflow of heatfrom therobot arms
to outerspace(aseriousproblemfor theFlight TeleroboticServicer(FTS)).

During the processof this research,a sensorwasdevelopedwhich solves
theseproblemsand,in sodoing,advancesthestate-of-the-artin capacitivesensor
performance.A singleelementproof-of-principlesensorhasbeendemonstrated
on arobot in theGSFClab. In this demonstration,therobot routinelydetectsa
humanor an aluminumtrusselementat rangesof onefoot. Even tiny objects,
suchasgraphiteleadin apencil havebeendetectedat rangesof five inches.

The thrustof theresearchconductedunderthis grantwasin themodelingof
the electromagneticfields aroundthecapacitivesensor,which is being usedin
enhancingtheperformanceof thesensor.

Detailsof thecapacitivesensorandthemodelingtechniqueusedaredescribed
in chapter2.

1.2 Path Planning

The space station environment will be a structured one. This will lend itself

to precise representation on a computer. We will refer to this representation of

the robot's environment as the World Model. In planning a path for a robot,

checks for collisions are made with the objects in the World Model. This class

of planning, with an accurate knowledge of the robot's environment is known as

Global Planning.

However, the space station environment would be dynamic to some extent,

due to moving objects and new structural elements. This could render the World

Model inaccurate. In such situations, the robot is equipped with sensors to detect

the presence of obstacles. Using only local information obtained from the sensors,

a single move is planned which will keep the robot away from the obstacles and

move it closer to the goal. After each move the operation is repeated, until the

goal is reached. This class of planning is called Local Planning.

It is reasonable to assume that it will be largely possible to maintain an accurate

knowledge of the world, and that unexpected obstacles would appear infrequently.

It would therefore be warranted to first plan a path using the global technique,

and then if an unexpected obstacle is accosted, to modify the path using the local

technique.
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A numberof global planning algorithmsfor robot manipulatorsareavail-
able [Brooks83], [Gou_nes84], [Laugier85], [Faverjon86], [Lozano-Per6z87],

[Barraquand89], [Campbell92]. In this research we have focused on the local

planning part of the problem. The essence of the research problem is, then, to

solve the path planning problem for a redundant robot manipulator system working

in a dynamic, but mostly static, structured, environment.

With the technique of dividing the path planning task between a global and a

local planner, the global planner can work with a coarser description of the world,

leaving the local planner to take care of obstacle avoidance at the finer level. This

provides another motivation for solving this problem.

Our approach to solve this problem, and implementation results are described

in chapter 3.



Chapter 2

Sensing

2.1 The "Capaciflector"

The "Capaciflector" (Capacitive Reflector) is a capacitive sensing element backed

by a reflector element which is driven by the same voltage as the sensor to reflect

all field lines away from the grounded robot arm, thus extending the range of the

sensor. This approach is an extension of the technique used in instrumentation

systems where a shield or guard is used to eliminate stray capacitance [Webster88].

Figure 2.1" "Capaciflector" principle

Fig. 2.1 shows the principles of operation in terms of charges and electric

fields. Fig. 2. la shows a capacitive sensor not using the "capaciflector" principle.

Since we are using relatively low frequencies (approximately 20kHz) we have the

quasi-static condition and static charges and electric fields can be used to determine
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thecapacitancethesensor"sees". Wecanseethat the smaller the stand-off from

the grounded robot arm, the larger the capacitive coupling between the sensor

and the ground. This, of course, has the effect of reducing the relative coupling

between the sensor and the object being sensed, and hence reducing sensor range

and sensitivity. On the other hand, increasing the stand-off increases the bulk of

the robot arm and adds wires and wiring complications. And, when the insulation

materials are added to support the stand-off, the ability of the robot arm to dissipate

thermal energy into space is reduced. When the "capaciflector" principle is used

(Fig. 2.1b), the field lines from the sensor are prevented from returning directly

to ground. The effective stand-off is approximately the width of the active shield

thickness (on the order of 0.060 inches) and a robot arm with very little bulk, and

still have the performance of a large stand-off.

Reflector &iver

Reflector [_

------ R1

Ct

Figure 2.2: "Capaciflector" circuitry

Fig. 2.2 shows the electronic circuitry. The capacitive coupling between the

sensor and the object being sensed is used as the input capacitance tuning the

oscillator frequency. As an object comes closer, the capacitance increases and

the oscillator frequency decreases. On the other hand, the reflector is attached to

the output of the voltage follower so it is electrically isolated and prevented from

affecting the tuning of the oscillator frequency. At the same time, the voltage

of the reflector follows that of the oscillator. Thus, the reflector is in phase with

(and reflects) the electric field of the sensor without being affected by the coupling

between the sensor and an approaching object.



2.2 Detection

We will now examine the means by which the sensor detects an object. The

discussion will be limited to conductors for simplicity although dielectrics are also

detected. Both the grounded and ungrounded cases will be examined.

Since we have low frequency, (approximately 20 ld-Iz), the quasi-static case

holds. Assuming a momentary positive potential V in Fig. 2.1b, we can see

that the electric field lines emanating from the sensor towards the object induce

negative charges on the object surface nearest the sensor. Thus that surface can be

considered one plate of a capacitor and the senor the other. But, an ungrounded

conductive object is charge neutral so an equal amount of positive charge will form

on the surface away from the sensor so as to ensure that there is no net electric field

in the conductor. These charges couple back to ground which creates a second

capacitor in series with the one mentioned above. These are labeled in Fig. 2.2

respectively as C,o and Cog. But, there also is a path where the electric fields from

the sensor can go around the active shield and couple to ground directly. This is

labeled as Csg. Thus our tuning capacitance, Ct, is given by the relation

C_ - C,oCog + C,g (2.1)
C,o + Cog

In the case where the object is grounded, equation 2.1 reduces to

Ct = C,g + Cso (2.2)

Examining equations 2.1 and 2.2 above, since we are looking for small changes in

Ct, it is clear we want C,g to be small. Therefore, we want the shield or reflector

to force the field lines from the sensor towards the object as much as possible.

We now turn to the case where the object is not grounded [Hayt89, Lorrain88,

Fischer89]. We know that

C = Q-Q- (2.3)
V

We also know that a good conductor must have the same potential everywhere on

its surface. Therefore the potential on the object will be that of its furthest point

from the sensor. We will call the potential on the sensor V and the object potential

Vo. Thus we have

Q_ • and (2.4)
C,°-V__Vo,



Qi

Cog = _oo (2.5)

where Qi is the charge induced in the object.

It is apparent that an object with any dimension more than a few inches in

any direction (for example length) forces the potential on the entire surface of the

object to be very low. And, as the experimental evidence shows, in practice, all

objects are approximately grounded.

2.3 Modeling

The frequency of oscillation of the circuit in Fig. 2.2 can be shown to be

ln(0.5)
f - (2.6)

2R1C

where R3 = P_ = 2R2. This implies

Af ACt
m

fo C,o+ exc,
(2.7)

where f0 and Cto represent the frequency and the capacitance of the sensor in

the absence of an object, and Af and ACt represent the change in frequency

and capacitance respectively because of the introduction of an object. Therefore

studying the relationship between change in capacitance and sensor configurations

is key to improving the sensor's sensitivity. A computer tool was developed

towards this end. The tool tracks the change in capacitance as the object moves

towards the sensor, and repeats the operations for various configurations.

The modeling is done in a 2D world, the entities comprising the system are

assumed to extend to infinity along the axis perpendicular to this plane. Boundary

integral method [McAllister85] was used to determine the charge distribution

on the entities; the charge distribution trivially leads to determination of the

capacitances. The modeling approach is therefore similar to that used by Volakis

et al. [Volakis87]. Details of this method are provided in Appendix A.

The system considered in the tool consists of three linear entities (representing

the grounded robot arm, the shield, and the sensor), and one circular entity (repre-

senting the object). For a given configuration of the ground, shield and sensor, the

program tracks the sensor capacitance as the object moves towards the sensor along
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theverticaland the horizontal directions. This is done by first defining a planar grid

above the sensor, positioning the object center at a grid point, and computing the

sensor capacitance for each such object position. The tool output is designed for

convenient plotting of the percentage-frequency-change vs distance-from-sensor

graphs. The tool automatically generates new configurations (over which the user

has control), and performs the above operations for each configuration.

2.4 Results

2.4.1 Experimental and modeling results

An experimental laboratory set-up was assembled. The set-up consisted of a

sensor approximately six inches long, the reflector approximately fourteen inches

long (Fig. 2.3). The object was one inch in diameter and thirty six inches long.

The reflector was made from strips of copper foil that could be connected in the

configurations shown in Fig. 2.4. Subsequent testing has shown that the sensor

must be shorter than the reflector to reduce the end effects which substantially

reduce sensitivity. The explanation is that the reflector must totally surround the

sensor to contain the field. Otherwise, the flux lines from the sensor will simply

shift to the lower field strength and return to the ground at the ends of the sensor,

thereby reducing the coupling to the object. The results of the experiment are

shown in Fig. 2.5.

1.5 m,

6 _.hns

. Reflector

strips

Figure 2.3: Test sensor
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Figure 2.6: Modeling results

The developed tool described in Section 2.3 was used to plot percentage-

change-in-frequency vs distance-from-sensor graphs for the four configurations

shown in Fig. 2.4. Capacitance is determined using the technique described in

Appendix A. Results axe shown in Fig. 2.6. As mentioned before, the program

computes the sensor capacitance for different object positions. Of these, those

positions for which the object's center lies above the center of the sensor are

shown in the above graph.

2.4.2 Discussion of results

The results from the modeling and the experiment are similar. Both show the

frequency change is inversely proportional to the object distance from the sensor.

They both show that the sensitivity increases dramatically as the shield width

increases. The increase is approximately seven-fold for the experimental result

and almost nine-fold for the model.

The substantial difference shown between the modeled results and the experi-

mental results are probably due to our primitive models used to date. The model

program assumes infinitely long strips for the sensor, shield and object, while our

experiment used a six inch sensor with fourteen inch shield. End effects or the

short sensor may account for the difference; our modeling has not progressed far

enough to determine. The rate of variation between the curves is also different.
The model shows almost no difference between the curves for no-shield and shield
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= sensor width, while the experimental results show a substantial difference. This

result may be entirely due to inaccuracies in the model. Similarly, there is a differ-

ence between the rate of change between the upper two curves on the graphs. The

model shows an increasing rate of change difference while the experimental result

shows almost a constant difference. We cannot presently account for this result,

but it may be due to either the model or to electronic circuit limitations. This

latter conjecture comes from the fact that the frequency changes are substantial

and nonlinearities may limit the frequency shift. Investigations are continuing.
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Chapter 3

Path Planning

The problem of robot path planning is that of finding a continuous sequence of

robot configurations to reach a goal configuration from a given initial configuration.

The path should be such that the robot does not collide with any object that may

be present in its workspace.

Let us refer to the work space of a robot in R 3 (or R 2, for a planar 2DOF

mechanism) as its Wspace. The configuration (q-) is a specification of the position

and orientation of the robot structure with respect to a reference world frame. We

parameterize the configuration by (ql, q2,..., qp) for a P-dof system, where each

qi describes the value of a dof. For example, for a robot with rotary joints, each

would represent a joint angle value. Cspaee is the configuration space of the

robot. With the parameterization considered, the Cspace would be a P-dimensional

Euclidean space.

Fig. 3.1 shows a 2DOF planar robot, the obstacles in its work space (the

W-obstacles), and the start and goal configurations desired. Fig. 3.2 shows the

corresponding Cspace. It should be noted that the robot is mapped to a point in the

Cspace. Mappings of the W-obstacles in Cspace are referred to as C-obstacles.

Therefore the path planning problem in Cspace is one of finding a collision free

path for a point automaton amidst C-obstacles. Planning is therefore usually done

in Cspace.

Two classes of path planning techniques exist, global and local planning.

Global path planning techniques use global information of the robot's world

to generate a path. Spatial (and temporal) information of all obstacles within

the robot's workspace is presumed to be known. The union of the C-obstacles is

called the C-obstacle region. The complement of the C-obstacle region is the free

12
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Figure 3.1" Wspace of a 2DOF robot
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Figure 3.2: Cspace of a 2DOF robot
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space. Most techniques capture the connectivity relationship between free spaces

in some representation, such as a graph, which is then checked to see whether there

is a continuous path between the initial and the goal positions. Such techniques

are necessarily done offline due to the computational time required. Therefore,

robots operating with such planners will not be able to avoid unexpected obstacles

in the planned path.

Local path planning techniques use local information of the robot's world

for collision avoidance. Sensors are used to retrieve information in the vicinity

of the robot, which is used by the planner to avoid collisions. Usually, local

planning techniques use the potential field method, in which a point robot in

its Cspace, moves under the influence of an artificial potential field. The goal

forms the attractive potential and the obstacles the repulsive potentials. The robot

then moves along the direction of the steepest descent of the potential field. The

attraction of this approach is that the planning can be done in real time, no a-priori

knowledge of the world is required.

However, since a world model (if one could be available) is not used here,

useful, available information is not used. This might result in inefficient, wasted

motions. For example, if the world model were queried, it might be clear to the

planner that the current path would lead to a dead-end. Instead, the local planner

would proceed in the fruitless direction until the sensors detect the dead-end.

These methods can be considered to be two extreme approaches towards

obstacle avoidance. Global planners assume that the world is static, and therefore

all obstacles are known. Local planners assume that no information of the world

is available, therefore all obstacles are unknown.

For a world that is mosdy static, such as our prescribed scenario, there is a

need for the global and the local planners to interact. The global planner should

generate a path with the most current version of the world model. The robot should

follow this path until an unexpected object is met with. The local planner should

then attempt to direct the robot around the obstacle, and back onto the globally

planned path. At this point, the robot should start following the globally planned

path.

At a lower level, a robust collision avoidance scheme, designed to continuously

monitor the immediate surrounding of the robot, and to keep it away from all

objects, is needed to complete the path planning system.

Major local path planning techniques reported in literature are discussed in

the sections 3.1.1 and 3.1.2. Discussion is restricted to path planning for robotic

manipulators (as opposed to mobile robots). The approach adopted is discussed

14



in section3.2.

GPP l"

__2__ I
LPP ' l

r' I /

Figure 3.3: Proposed planning architecture

3.1 Background

3.1.1 Deterministic methods

While most researchers have utilized heuristic methods for local planning, Lumel-

sky et al. have extensively explored deterministic methods _. Perhaps the greatest

contribution of this work is the proof that local feedback information is sufficient to

ensure reaching a global objective [Lumelsky87a]. For two DOF robotic systems

this approach guarantees to find a solution if one exists, or to correctly conclude

that one does not exist. The approach is briefly described below, for a two DOF

system.

Let a free path in Cspace be referred as the main (M) line. For every obstacle

within the workspace of a robotic manipulator, there exists a shadow region which

cannot be accessed by the robot. Let us refer these regions as pseudo obstacles.

We refer the mappings of the obstacles and the pseudo obstacles in the robot's

configuration space as C-obstacles.

Four classes of M lines have been identified [Lumelsky87c], and a represen-

tative M line, a straight line from the goal to the target, is selected as candidate

from each class. If an obstacle is detected while following the first selected M

1Applicability of these techniques is limited to robotic manipulators.

15



line (generallythe shortest line), the point automaton (mapping of the robot in its

Cspace) attempts to follow the contour of the obstacle until it meets the M line

behind the obstacle, or until it is determined that the goal cannot be reached by

following the current M line. A second M line is then selected, and the operation

repeated. If the goal cannot be reached with the second M line, it can be asserted

that it is not possible to reach the goal. Contour following is done using the range

distance provided by proximity sensors, and knowing the kinematics for the given

robot configuration. A priori information about the obstacle is not required.

Although the approach of contour following in Cspace has been extended to a

practical three dof robot system [Cheung89b], convergence of the algorithm has

not been proved for three and higher dof systems.

3.1.2 Heuristic methods

Heuristic methods must be resorted to to plan paths for redundant systems. The

most important heuristic method is the potential field approach.

If the obstacles and the robot are similarly charged particles and the goal

position has an opposite charge, the robot would be repelled from the obstacles and

attracted towards the goal. This is the main concept in the potential field method,

proposed by Khatib [Khatib80]. Robot motion is a function of its current position

only, and is along the direction of the resultant electrostatic force experienced by

the robot at that position. An elemental move is executed along this direction and

the forces recalculated, to determine the next motion direction. The process is

repeated until the robot reaches the minimum potential. This could either mean

that the goal is reached, or the robot is trapped in a local minimum.

The robot links and the obstacles were represented by spheres, capped cylin-

ders, rounded capped cones, and rounded boxes. The point on the robot links

closest to an obstacle was used for computing the repulsive force. The distance

between the point automaton and its final destination was used to compute the

attractive force. The resultant force was defined to be a linear combination of the

two forces, and motion was executed along the direction of the resultant force.

The motion generated by this approach is smooth around obstacles. The

approach is general, and has been applied to many systems including multiple

manipulator coordination [Myers85] and mobile robots [Elfes89].

Major issues in this method are object representation, potential field genera-

tion, and negotiating potential wells. The tradeoff in representation is between

accuracy and speed of computation. Representing the objects as a combination of
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geometricprimitives reduces the computation required for determining the poten-

tials; simpler and fewer primitives help this objective. Spheres 2 [Myers85] and

ellipsoids [Wang87] have been exclusively used for this purpose, and sometimes

with other primitives such as cylinders etc. [Khatib80]. Other representations

which have been used are hierarchical bitmaps [Barraquand89], and occupancy

grids [Elfes89]. The challenge in generating potential fields is to minimize the

number of potential wells and to reduce the depths of the wells [Barraquand89].

Finally, a major drawback of this method has been its inability to efficiently nego-

tiate potential wells. Barraquand has introduced the concept of connectivity graph

of local minima to effectively address this issue [Barraquand89]. However, this

approach requires global information, and therefore is unsuitable for local path

planning applications.

Another drawback of this method is that the potential function to be mini-

mized, is a combination of two opposing functions : the goal or task function

which attracts the robot, and the collision avoidance function which repels the

robot [Faverjon87]. Depending on the potential function, unsatisfactory results

may therefore be produced if an obstacle is very close to the goal.

3.2 Methodology

The large number of DOFs of the system being considered warrants us to use

a potential field based approach. We are in the process of implementing an

on-line variational approach, which we describe below. Parts of this have been

implemented, the results axe described in the following section.

It is assumed that a global planner, such as the slide-jump planner [Campbell92],

would provide the path to the local path planner (LPP) as a sequence of path points

in Cspace. We shall refer to this path as the globally planned path or the original

path. Once an obstacle is detected, we attempt to locally modify a portion of the

original path, so that the modified path goes around the obstacle. We shall refer to

this local modification as relaxation of the path (Fig. 3.4). We shall refer to the

portion of the path being relaxed as the path segment ($) 3. Let us say that there

are/_ path points in 8.

2Myers reports that the speed gained by using spheres does not effectively offset the loss in

representational accuracy [Myers85].
3Work needs to be done to determine what would be a good size for the path segment. This

would definitely be dependent on the robot configuration and the geometry of the obstacles.
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Figure 3.4: Path relaxation

We consider a subset of the Cspace as the search space for the relaxation. We

call this subset as the neighborhood (A/') of S; S is completely contained within

A/" (Fig. 3.5). Searching a smaller space for a solution reduces computation time.

The dexterity provided by the redundancies enhances the likelihood of finding

a collision-free path even in a reduced space 4. While relaxing S, only those C-

obstacles that lie within A/" will be considered for planning purposes. This includes

all known C-obstacles within that region, which should be obtained by querying

a World Model, and the unknown C-obstacles which have been detected by the

sensors.

q2_ Neishbe_h°od

Figure 3.5: Neighborhood of a path segment

We shall use a simplified geometric representation of objects in Wspace (the

W-obstacles). We shall use hyper-ellipsoids. We believe these entities will provide

4Once again, work needs to be done to determine the size of the neighborhood.
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Figure 3.6: C-obstacles
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Figure 3.7: C-obstacles in neighborhood
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agoodtradeoffbetweenaccuracyof representationandacceptablecomputational
speed(whilecomputingdistances).

We assumethatwe shallget thehyper-ellipsoidparameterscorrespondingto
eachW-obstaclewithin the mappingof .h/"in Wspacefrom the World Model.
Correspondingto each sensorwhich signals the presenceof an obstacle,we
couldrepresentthe unknownW-obstacleby a hyper-ellipsoidof somestandard
dimensions.Hopefully, the proximity informationfrom the sensorscanbe used
to determinethelocationof aprobableobject,suchas, say,a girder. Especially,
sincewedo not expectmanyunknownobstaclesto bepresent. In sucha case,
wewouldrequirelessernumberof hyper-ellipsoidsfor representingtheunknown
obstacle.Let us say there are N obstacles in A/'.

As stated in Section 3.1.2, the potential field method is used to maneuver

around the newly detected obstacle. Potential fields are produced by the interac-

tion of attractive (robot-goal interaction) and repulsive (robot-obstacle interaction)

entities in the Cspace. However, we have the description of the objects in Wspace,

and not in Cspace. Generating C-obstacles from W-obstacles is (a) computation-

ally expensive, and (b) non unique for redundant robots. Moreover, we would not

have a description of the unexpected obstacle for the mapping. We therefore use

the following method, which does not require a description of the C-obstacles, for

generating the potential fields in Cspace.

First, let us select some points on the robot structure, which we shall refer to as

control points (c). These points are used for computing the potential functions, as

explained below. Physically, they correspond to the location of the sensors on the

robot links. This correspondence is not necessary, but is chosen for convenience.

Let us say there are M control points on the robot.

Second, we define the repulsive potential function in the Wspace, the Wspace

potential (P_v), for ith control point (corresponding to a configuration (1) as

N ( 1 1 ifd(c_((l),O,_) < do Vi 1 Mmax,,=l d(_,(_),O.) _o) if d(c_(_),O,_) > do = '""P,,._v (c,((t)) = 0

(3.1)

where d(ci(4), Or,) denotes the distance between the ith control point and the nth

object, and do the influence distance. If the distance between the control point and

the object is greater than do, the control point will not be repelled by the object.

With this definition, we make P have a large value at the obstacle boundaries.

Finally, we define the potentials in Cspace. The potential of a point q in Cspace,

the Cspace potential (Q), has two components, the repulsive and attractive po-
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Control pomm

Figure 3.8: Control points

tentials. The repulsive potential is defined as

Qj,,_p(cfj) = zMl P,,,,p(c_(#)); Vj = 1,...,R (3.2)

The attractive potential is defined as

Qj,_,,(cij) = d(dlj,qjo); Vj = 1,...,R (3.3)

where d(_, q_0) denotes the distance between the jth path point and the position

of the same path point in the original path.

Let us now define a functional given by

J = fs(Qj,_tt((lj) + Qj,,,p((13))dS (3.4)

We define the Cspace potentials such that if,5 goes through an object, J would

be very large. Our objective is to find a path whose functional would be less than

a critical value, J < Jc,. It is to be noted that we do not attempt to determine

the minimum, since our primary aim is to reduce computational time rather than

finding an optimal solution.

To determine J, S is sampled k(R - 1) times, where k is an appropriately

chosen constant. The effect is to check for collision in between the path points.

Another way of achieving the same objective would have been to discretize S into

k(R - 1 ) segments, and sample S only at the path points. By adopting the former,

however, we manage to maintain the dimensionaiity of the funcional optimization

problem to RxP, where P is the number of degree-of-freedoms of the system, in

comparison to the kxRxP dimensionaiity of the latter approach. We use Powell's
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N-dimensionalminimizationalgorithmfor theminimization.Weshalluserandom
walk to escapeunacceptablelocal minima,which in this casewouldcorrespond
to apaththroughanobject.

Therobot is commandedto movetowardsthefirst pathpoint in S. The World

Model is updated with the sensory information. After some time interval, the local

path planner takes another snapshot of the world through the skin sensors, and S

is relaxed again. This process is repeated until the first path point is reached. We

shall maintain a constant number of path points in S. Therefore, we delete from

S the path point that has been reached, and include the first path point outside A/'.

The new A/" is determined for the modified S. This process is repeated until S

coincides with the original path, at which point the obstacle negotiation would be

complete.

Some notes on the control points. As is clear from the above discussion, the

variational planning is done in Cspace. Computation of the Cspace potentials

would have been far easier if we had a description of the obstacles in Cspace. We

do not attempt to map the Wspace obstacles to Cspace due to the complexity of the

process involved. Therefore to determine the Cspace potential for a configuration

_, we determine the location of the control points in Wspace corresponding to

the configuration, and determine the Wspace potentials for each control point

(ref. equation 3.1). Then we compute the Cspace potentials from equation 3.2.

Therefore control points are essential for generating the Cspace potentials, which

are in turn used in planning.

i_ Sensitive zooe

Cqmci,ive ,e,

Coelrol poials

Figure 3.9: Control points and the sensitive zone

By using control points to describe the robot, we essentially discretize the

robot for computational purposes. Spacing between the control points is then an

22



issue.Since collision checks are done only at these points, if they are separated far

enough, the planner might not account for some collisions. However, as long as

the robot is completely surrounded by the sensitive zone of the capacitive sensors,

one can be assured of collision avoidance. For convenience, we have considered

the control points to be the sensor locations.

3.3 Current implementation and results

The current version of the LPP has been implemented for a Stanford manipulator. It

communicates with a World Model where the objects are represented by ellipsoids.

It supports multiple control points. It communicates with a simulation program

on the SGI Personal Iris at the Intelligent Robotics Laboratory, NASA/GSFC.

For a three DOF robot, with twelve control points, eight path points in the path

segment, and three objects in the neighborhood, it took about 20 seconds to relax

a path on a DECStation 3100.

Future work will address the issues of escaping local minima with random

walks, representing objects with hyper-ellipsoids, and devicing techniques to fur-

ther speed up the algorithm.
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Appendix A

Charge distribution on the

Capaciflector

The given entities are first discretized into M elements. Let an mth element of

length Asr_, be at a potential of Vm, and have a uniform charge distribution of

density pro. In our problem, the voltage is specified on all the entities, and hence

on all the elements. Let us enable the use of the voltage of any of the elements, say

the k th element as the reference voltage. Then applying the boundary condition

leads to the following set of M - 1 equations:

M

Y_ p_Knm = Vn - Vk; where n = 1,..., M, and n _ k (A.1)
ra=l

where K,_ is given by the equation

1 rmk
K_,_ - In --; where m _ n and m _ k (A.2)

2re0 rnm

and rij is the distance between the i th and jth elements. For rn = n we have

1 (In rink
K,,., - 2r,o _ + 1 + ln2) (a.3)

and we can show that K,_k = -K_m. Principle of conservation of charge leads to

the last equation:
M

y_ AsmPm = 0; (A.4)

m=l
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The M linear equations axe solved for the charge density distribution on the

elements. Capacitance between the sensor and the object is computed from the

relation
M'

Ct = Y_ m_qm'Pra'/(Vrn' - Vobj) (A.5)

,_'=1

where each m' is an element of the sensor, M' is the total number of elements on

the sensor, and Vobj is the voltage of the object.
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